

#### Who We Are

- Muhlenberg Senior College Students
- Business Course:
  - Bus 475: Business and Policy
  - Taught by Professor Roland Kushner
- Working with Liesel Gross and Phil DePoe throughout the semester
  - February April 2018





#### **Question at Hand**

# What is the best way to prioritize LCA projects in an effective and efficient manner?





#### Our Process

- 1. Met with LCA to learn about the company and the industry
- 2. Talked through what would help LCA the best
  - Prioritize projects
- 3. Learn and understand the water market
- Understand the locations that LCA serves, the current projects, and the costs of the projects
- 5. Understand important and unique inputs go into specific projects
- 6. Achieve proper ranking system for importance of specific issues
- 7. Create prioritization tool that is comprehensible and easy to use





#### Our Task

- Create easy to use prioritization tool based on LCA staff judgment
- Our methodology: Create a spreadsheet tool that can prioritize a multitude of projects
  - The tool is adaptable and can be changed for different scenarios
  - Tool is easy to learn and can be used at LCA's discretion when prioritizing potential projects





## Example of Tool

|                                | Park Pump Station        |             |                   |        |
|--------------------------------|--------------------------|-------------|-------------------|--------|
| Project Name:                  | Upgrade                  |             |                   |        |
| Date:                          | 4/22/18                  |             |                   |        |
| PM:                            | CEV                      |             |                   |        |
| Issue                          |                          |             |                   | Weight |
|                                | Subsets                  | % of Subset | Monetary Value    |        |
| Problem/Reason                 |                          |             |                   |        |
|                                | Imminent Failure         | 20          | \$0.00            |        |
|                                | Performance Requirements | 10          | \$0.00            |        |
|                                | Regulatory Requirements  | 15          | \$0.00            |        |
| Total                          |                          | 45          | \$0.00            | 45     |
| Cost of Project                |                          |             |                   |        |
|                                | Staff                    | 5           | \$100,000         |        |
|                                | Engineering              | 5           | \$630,423         |        |
|                                | Construction Contract    | 20          | \$3,834,721       |        |
|                                | Contingency              | 2           | \$200,000         |        |
| Total                          |                          | 32          | (\$4,765,144)     | 32     |
| Cost Reduction From<br>Project |                          |             |                   |        |
|                                | Labor Reduction          | 10          | \$0.00            |        |
|                                | Maintenance Reduction    | 10          | \$0.00            |        |
|                                | Other                    | 2           | \$0.00            |        |
| Total                          |                          | 22          | \$0.00            | 22     |
| Return on Investment           |                          |             |                   |        |
|                                | Developer Contributions  | 0           | \$0.00            |        |
|                                | Recovery Charges         | 0           | \$0.00            |        |
|                                | Other                    | 1           | \$0.00            |        |
| Total                          |                          | 1           | \$0.00            | 1      |
|                                |                          |             |                   |        |
| Total Project Cost             |                          |             | \$ (4,765,144.00) |        |
| Total Project Score            |                          |             |                   | 100    |

|                                | Heidelberg Heights       |             |                 |        |
|--------------------------------|--------------------------|-------------|-----------------|--------|
|                                | Sanitary Sewer           |             |                 |        |
| Project Name:                  | Rehabilitation           |             |                 |        |
| Date:                          | 4/22/18                  |             |                 |        |
| PM:                            | CEV                      |             |                 |        |
| Issue                          |                          |             |                 | Weight |
|                                | Subsets                  | % of Subset | Monetary Value  |        |
| Problem/Reason                 |                          |             |                 |        |
|                                | Imminent Failure         | 35          | \$0.00          |        |
|                                | Performance Requirements | 1           | \$0.00          |        |
|                                | Regulatory Requirements  | 2           | \$0.00          |        |
| Total                          |                          | 38          | \$0.00          | 38     |
| Cost of Project                |                          |             |                 |        |
|                                | Staff                    | 1           | \$10,000        |        |
|                                | Engineering              | 2           | \$0             |        |
|                                | Construction Contract    | 25          | \$296,500       |        |
|                                | Contingency              | 1           | \$20,000        |        |
| Total                          |                          | 29          | (\$326,500)     | 29     |
| Cost Reduction From<br>Project |                          |             |                 |        |
|                                | Labor Reduction          | 15          | \$0.00          |        |
|                                | Maintenance Reduction    | 15          | \$0.00          |        |
|                                | Other                    | 2           | \$0.00          |        |
| Total                          |                          | 32          | \$0.00          | 32     |
| Return on Investment           |                          |             |                 |        |
|                                | Developer Contributions  | 0           | \$0.00          |        |
|                                | Recovery Charges         | 0           | \$0.00          |        |
|                                | Other                    | 1           | \$0.00          |        |
| Total                          |                          | 1           | \$0.00          | 1      |
|                                |                          |             |                 |        |
|                                |                          |             |                 |        |
|                                |                          |             |                 |        |
| Total Project Cost             |                          |             | \$ (326,500.00) |        |
| Total Project Score            |                          |             |                 | 100    |





## Our Findings

- LCA staff can use this tool to internally rank projects
- Tool allows for projects (both in the long term and short term) to be prioritized
- Can be used in both the Allentown and Suburban Division
- Provides a more focused picture look (i.e. "short term look")





#### Conclusion

- Importance of different issues will be case by case
- Relevant monetary values will be visible and impact decision making process
- Tool can adjusted to suit different variables
- Our tool could be used more in short term decision making (specifically annual projects), while other tools that have been developed are focusing on a broader/long term picture of prioritization





### **Questions?**



